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Friction of solids involves short-range forces between adjacent surface
layers, which are largely determined by theshape and structure of those
layers, which are themselves determined to a considerable extent by
the relative velocity, A theory of friction thus involves the micro-
structure and the detailed physical phenomena near the surfaces.

However, most existing theories are based on phenomenological
(essentially macroscopic) concepts (see [1] for a survey), though the
explicit use of microscopic concepts is presented in [2], where it is
shown that one elastic body sliding over another gives rise to elastic
waves that carry energy away from the contact surface, This loss may
be treated formally as due to a tangential force resisting the motion,
The force defined in this way has a falling velocity characteristic.

There is much evidence that the friction differs greatly from that for
ordinary elastic bodies if one body (or both) should be highly elastic
(rubber, polymer, etc)[3]. A model describing these differences
would be of considerable interest,

Here we consider the somewhat idealized case of a rubbery body
sliding over a crystalline one; the frictional force is deduced as a
function of the velocity and other parameters, The surfaces are taken
as smooth and clean, while the bodies are homogeneous, Various
simplifying assumptions are made, but these are unimportant from the
qualitative standpoint,

1. PHYSICAL MODEL OF FRICTION

Consider the motion (relative velocity v) of a
rubberlike body 1 in the space z > 0 (Fig. 1a) over
the elastic body z in the space z « 0, The bodies
interact via discrete sets of force centers distributed
throughout the volumes; the detailed nature of these
centers will not be discussed, but they may be supposed
to be microroughness or (if the gap & is very small)
individual groups of chain molecules. The only
important point is that the interaction occurs via this
set of centers.

1. Body 2 has a completely periodic structure; the
force centers (points in Fig, 1a) are joined by rigid
bonds, Possible oscillation and displacement of these
centers are neglected. The repeat distance 2L of
body 2 inthe direction of the x axis is then independent
of the velocity.

2. The surface layer of body 1 consists of sawtooth
chains packed in a direction parallel to the motion,
these chains consisting of force centers of separation
a. These chains can be straightened by the tensions
produced by the motion. Then the surface of body 1
has a periodic structure, the repeat distances being
21 along the x axis and 2b along the z axis (Fig. 1).
Real chains have a spatial structure, and their links
may lie in a variety of directions; here we simplify
the model by assuming that the chains lie in planes
parallel to the (x, z) plane. It will become clear that
the qualitative results are not affected.

3. Relative motion produces tensile stresses that
increase with the frictional force Q. These forces
cause the chains to straighten by reduction of the

angle o, distance @ (Fig. 1b) remaining unaltered.
These chains thus resemble the long spiral molecules
or fibers of a rubbery body, while the change in « is
due to the elastic forces. Here ! = [ (Q), dnd

d1d0 >0, 1) =1, a.1)

We also also assume that there is a finite 1limit
Il as Q — = (we neglect chain rupture).

4. The separationd is governed by the normal
pressure of the upper body on the lower one and by
the specific force of interaction between the surfaces
of bodies 1 and 2. This force is an attraction ford
large, but repulsive forces appear ford small, so
there is a maximum for a gap6°; Figure 2 shows this
force f (r) as a function of the distance r between the
bodies, while 6 x corresponds to the minimum possible
gap. The attraction até large is due to fluctuation
fields outside the bodies; theory [4] for large gaps
shows that a 6 ™ law applies, while experiments [5]
show that this applies down to gaps of about 0.04 w.

5. The chains tend to come together when the sur-
face of body 1 is extended along the x axis, so the
distance b(Q) between chains obeys

db/dQ <0,  b(0) =b,. 1.2)

Thus body 1 is represented as a network of force
centers with period 27(Q) along the x axis and 2b(Q)
along the z axis, one set of centers being at a fixed
distance 8 from the surface of body 2, while the next
set has a distance h(Q) from this surface given by

h=8 +(a®— ®%, dh/dQ <0, h(0) =h,. (1.3)

We assume that there are finite 1imits b, and b,
as @ — =,

It is convenient, as in [2], to introduce the peri-
odic functions oy(r) and o,(r) whose periods correspond
to the periodic structures of bodies 1 and 2 in the
direction of motion and which are such that the force
of interaction per unit area of body 2 is

F(r, ot) =02 (r) { o2 (0 —evt) fIr —1')dV,  (1.4)

in which the integration is taken over the volume Vi of
body 1; here allowance is made for the relative motion
of constant velocity v, e being unit vector along the
X axis,

We expand F(r, vt) as a Fourier series:

F(r, vt) = E,, Fun, n0Xp [m (% _gﬂ (1.5)

It is obvious that the y projection Fy(r, vt) = 0; it
has been shown [2] that the conservation of energy in
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the absence of motion gives F(() 0) = 0. There is no

loss of generality in assuming that F(Z) = 0.

2. ENERGY DISSIPATION AND THE FORMAL
EXPRESSION FOR THE FRICTIONAL FORCE

To determine the energy flux away from the contact
surface we must solve for the propagation of elastic
waves in the spaces z > 0 and z < 0 in response to
excitation at z = 0 by the periodic load of (1.4). For
z < 0 this reduces to solving the wave equation for
¥ = div U (U being the displacement vector), which is
easily done by separating the variables [2]. It has been
shown that decaying Rayleigh waves are possible for

mm > (nvl [ ¢yl)?, mm > (nvl / ¢,l)?,

and undamped sine waves for

mm < (nvL / ¢, 1), mm < (nvl / ¢,1)%.

Here c, and c, are the velocities of propagation of
longitudinal and transverse waves respectively.

An expression has been derived [2] for the energy
flux W_ in the lower half-space on the assumptionthat
m~ 0:

©
W= 2 {(ow) ™ FOOnF o +

n=1

+ 1o (4 2T FEF ) (2.1)
Here o is density, A and p are Lamé coefficients,
and Fyip and F(Zn are Fourier coefficients for the
projections of F(zr, 0).
Similarly we can derive W+, the flux into space
7 > 0. Here the chains of body 1 may be oriented in
the direction of motion not only in the surface but
also in the volume if the load is sufficiently high.
Then there will be several longitudinal and transverse
waves that propagate with different velocities, but this
is not a vital feature,
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Fig. 1

If again we put m = 0, the expression for Wy is
entirely analogous to (2.1). Equating Wi + W_ to the
work of friction per unit time, we get

oo

= p! 2 (u)lF((ffL Fff)_n + sz((,z,)an)_n) .

(2.2)

Here w; and w; are quantities dependent on the
elastic constants of both bodies; if both are crys-
talline, the summed expression is independent of Q
and v, so we get the falling velocity characteristic of

[2].
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Above we have followed {2] in assuming m = 0.
A reasonable physical basis can be given for this
assumption: the elastic waves are generated by the
periodic structures of bodies 1 and 2 moving with a
relative velocity v, as (1.4) shows. However, here we

Fig. 2

envisage only the propagation of existing waves, so,
if the only waves of importance are those with wave-
lengths much greater than the repeat distances, we
can treat both bodies as continuous media. This cor-
responds to m = 0 and also to v << min (cy, cy).

3. DEPENDENCE ON RELATIVE VELOCITY

Consider the velocity characteristic of Q when the
right-hand side of (2.2) depends on Q. For simplicity
we consider (2.2) in the linear approximation, i.e.,
we put

doy1dQ =0,  do,/dQ =0.

It may be assumed that the energy flux is propor-
tional to the number of force centers per unit of body
1, in which case

W, +W_~ 11, 3.1)
From symmetry, we may replace the F(r, 0) of
(1.5) by the force of interaction between the planar net
of body 1 and the surface net of body 2. Here we may

assume that, on average, F®X)(r,0)~ 0, while
F(Z)(r, 0) is periodic in'x and may be prepresentedas a
sum of terms describing the interaction of the surface
of body 2 with planar nets of body 1 at distances of

6, h, 6 + 2b, etc. The forces are of short range, so
we have from (1.5) for the z-projection of F(r, 0)

F'(r, 0) = 6, (%) 2] Bxf (hx), By=Cl-k,  (3.2)
k
in which by =8, h, 6 + 2b, etc; the C are constants
of the order of unity and of the same sign, while
f(r) is as in Fig. 2. Substitution of (3.2) into (2.2)
then gives
i 2
W,+W_=Quv=1I1 (2 cnc-n> (2 Cif () - (3.3)
n=1 *
Here op are the Fourier coefficients of 0y(x).
Substituting (3.3) into (3.2) and taking only the first
three terms in the sum

g Cf (hi)

(it will be clear that this does not affect the results),
we get
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Q =~ (o) 1A,f (8) +Aof (W) +
+ Aaf(® + 2)P (3.4)

in which A; ~ A; ~ A; are new constants. Differen-
tiation of (3.4) with respect to Q readily gives

=10 {—v 22 +214,1(8) +

+ Auf (h) + Asf (8 + 2b)] X

x[4: & i 50U

Expression (3.5) nowhere becomes zero, provided
that none of the derivatives onthe right in (3.5) becomes
infinite, which is assumed to be so; hence Q(v) has no
turning points.

Lo+ A (3.5)

Fig. 3

The actuald correspond to forces of attraction
between the bodies; it is natural to assume that h >6°,
6 + 2b >6°. Figure 2 shows that df/dr < 0 in this
region. From (1.2) and (1.3) we concludethattheterms
within the braces in (3.5) have different signs.

Consider the case where the denominator of (3.5)
becomes zero. Substitution of (3.1) into (3.5) gives

@ (Q) = [A1f (8) -+ Asf (h) + Asf (8 + 20)] dyQQ -
d (2b)
r=5+t2b dQ

= @:(Q) = 201 [ 4, &

22 ). 3.8)

th + 3dr

It is readily seen that the left-hand side takes
finite (nonzero) values throughout the range of Q, with
a monotonic rise from the value for Q = 0 to that for
Q — =_ The right-hand side of (3.6) tends to zero for
Q— 0 and Q — = (we assume that the derivatives of
I—Ix and b—bew with respect to Q tend to zero more
rapidly than as Q! and Q — «). This means that the
right side of (3.6) has a maximum for at least one Q.
For sufficiently large values of the derivatives on the
right in (3.6) this function may exceed in value the
left side of (3.6), in which case the curves represen-
ting the right and left sides of (3.6) as functions of Q
meet at least at the two points Q; and Q,, the deriva-
tive of (3.5) becoming infinite at these points (Fig. 3).

Consider these special points in more detail. From
(3.4) for v — 0 we get

Q = (vleo)™! [A1f (B) + Aof (heo) +
+Asf B +20)2 =Ty / v,

Similarly for v — « we have

Q = (vlg)* [Af () + 4of (h)) +
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+Agf B 4-2bp) )2 = Too / .

The derivative of (3.5) is negative in these asymp-
totic regions, and Q(v) decreases as v increases.

The derivative of (3.5) changes sign at Q, and Q,, which
corresponds to rise in Q(v) from Q; to @, over the
range [v, vy]. Hence the points (Qi, vi) and (Qy, v3) in
the (Q, v) plane represent cusps in Q = Q(v), while the
curve is as in Fig. 4. The first point corresponds to

a minimum and the second to a maximum, The pres-
ence of a maximum is in good agreement with the
experimental evidence [3].

Consider now the general behavior of the curve of
Fig. 4 response to change in normal pressure. In-
creased pressure causes 0, h, 6 + 2b, etc. to move
to the left in Fig. 2; § in the region r < §° corresponds
roughly to an upper bound to the frictional force as a
function of pressure, df/dr decreasing in magnitude,
and the right side of (3.6) ultimately becomes less
than the left for all Q or coincides with it at one point
(broken lines in Fig. 3). That is, the region of in-
creasing friction as a function of velocity vanishes as
the pressure is raised.

‘The effects of elasticity are as follows. Aninelastic
body corresponds in this model to derivatives of h, b,
ete. with respect to Q that are small, so the right side
of (3.6) becomes less than the left. The right side
increases with the elasticity, and for certain critical
values of the parameters its curve touches the curve
of Fig. 3 representing the left part of (3.6). Above
this there appears a region as in Fig. 4.

The limits of applicability of these qualitative
results are as follows: The upper bound of the velocity
range follows directly from the above:

vL£¢

in which c is the least of the velocities of elastic
waves in bodies 1 and 2. The lower bound to the range
of v in which this applies has [2] been discussed for
elastic bodies:

t it z z
Q) =2 N PR R,

n=1

(3.7)

In the present case the lower bound coincides as to
order with the solution of (3.7), which gives extremely
low velocities, e.g., v of 0.5~1 cm/sec for steel on
steel.

@, ~

[ v, v, 7

Fig. 4

It is of interest to compare Fig. 4 with the results
of [2]. Q is very small for high v (but not ones in
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excess of ¢); the tensile stresses in the rubberlike
body are small, so the problem hecomes that con-
sidered in [2]. Hence the asymptote of the curve of
Figure 4 for large v is represented by the broken
line, Tw/v. The friction increases at lower speeds,
and the stresses extend the polymer chains, which
brings the force centers of bodies 1 and 2 closer
together. There is thus a rapid rise in the force of
interaction in some range v > v, near v,. Ultimately
the extension of the chains reaches a limit, which
leads to fall in the force in range v; < v < vy, The
chains are maximally extended as v continues to de-
crease, and the surface layers of body 1 have an ori-
ented structure; neglecting possible chain failure at
high Q, we have a situation closely resembling that
envisaged in [2]. Hence for v < v; the Q(v) curve of
Figure 4 tends to the asymptote T/v (shown by the
broken line), with Ty # Tx, in general.
Weareindebtedto G. I. Barenblatt for a discussion.
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